Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Welcome to Software Development on Codidact!

Will you help us build our independent community of developers helping developers? We're small and trying to grow. We welcome questions about all aspects of software development, from design to code to QA and more. Got questions? Got answers? Got code you'd like someone to review? Please join us.

Comments on Best practices to write functions for both execution modes in Tensorflow, eager and graph mode

Post

Best practices to write functions for both execution modes in Tensorflow, eager and graph mode

+0
−0

I regularly run into the problem that I have a Python function that I want to use in both, eager and graph execution mode. I therefore have to adjust the code so that it can handle both situations. Here are two examples:

import tensorflow as tf
def lin_to_db(x: float | tf.Tensor) -> float | tf.Tensor:
	# convert signal to noise ratio (SNR) from linear to dB

	if tf.is_tensor(x):
		return tf.math.log(x) * (10. / tf.math.log(10.))
	else:
		return math.log10(x) * 10.
def cast_to_int_if_eager(x: tf.Variable) -> int | tf.Variable:
	return int(x) if tf.executing_eagerly() else x

Are there best practices for such functions? Or maybe helpful predefined functions from Tensorflow?

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

2 comment threads

tensorflow-graph-mode (2 comments)
Can't you just always use tensorflow functions? (3 comments)
tensorflow-graph-mode
Alexei‭ wrote over 1 year ago

Is the tensorflow-graph-mode added tag related to https://www.tensorflow.org/guide/intro_to_graphs?

Also, it sounds very narrow, I am not sure if we should have a tag about this.

mr Tsjolder‭ wrote over 1 year ago

Roughly speaking, tensorflow-graph is tensorflow-v1 and tensorflow-eager is tensorflow-v2. I don't think these tags would be that useful. Especially since there are generally not that much tensorflow questions thus far.