Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Welcome to Software Development on Codidact!

Will you help us build our independent community of developers helping developers? We're small and trying to grow. We welcome questions about all aspects of software development, from design to code to QA and more. Got questions? Got answers? Got code you'd like someone to review? Please join us.

Post History

71%
+3 −0
Q&A How to compress columns of dataframe by function

Problem How can I compress each column of a dataframe to the output of a function (i.e., mean), preserving columns? MWE import pandas as pd data = {"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]} ...

2 answers  ·  posted 2y ago by mcp‭  ·  last activity 1y ago by mr Tsjolder‭

Question python pandas
#1: Initial revision by user avatar mcp‭ · 2023-02-13T20:27:44Z (almost 2 years ago)
How to compress columns of dataframe by function
# Problem
How can I compress each column of a dataframe to the output of a
function (i.e., mean), preserving columns?

# MWE
```py
import pandas as pd


data = {"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]}

df = pd.DataFrame(data)
```
```
   A  B
0  1  5
1  2  6
2  3  7
3  4  8
```

# Desired Output
```txt
     A    B
0  2.5  6.5
```

# Tried
I was thinking one of the `apply()` or `aggregate()` functions would
work.
[`apply`](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html#pandas.DataFrame.apply)
has a `results_type` field, but none of them produced the desired
output.

# Workarounds
These are workarounds I figured out that produce the desired outcome,
but I find them cumbersome and un-intuitive, and feel there must be a
simpler way I have not discovered.

Repetitive, cumbersome, and not scalable:
```py
df = pd.DataFrame({"A": [df["A"].mean()], "B": [df["B"].mean()]})
```

Un-intuitive and long:
```py
df.mean().to_frame().transpose()
```