Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Q&A

Welcome to Software Development on Codidact!

Will you help us build our independent community of developers helping developers? We're small and trying to grow. We welcome questions about all aspects of software development, from design to code to QA and more. Got questions? Got answers? Got code you'd like someone to review? Please join us.

How to use function composition for applying a function to first elements of a list?

+6
−0

Can anyone explain to me why my Haskell function gives rise to a type-definition error?

Originally, I wrote the following function to subtract one from the first n elements in a list:

dec_first :: Int -> [Int] -> [Int]
dec_first 0 l = l
dec_first n (x:xs) = (x-1):dec_first (n-1) xs

However, as a challenge, I wanted to write this function using available standard functions, using function compositions. This is how I ended up writing the function (for the subtraction part)

dec_first :: Int -> [Int] -> [Int]
dec_first = map (subtract 1) . take

but this function does not compile due to a type mismatch.

In my attempt to fix the error, I also tried the following variant:

dec_first :: Int -> [Int] -> [Int]
dec_first n = map (subtract 1) . take n

This function actually does work as expected. However, if I specify all parameters again, things breaks again:

dec_first :: Int -> [Int] -> [Int]
dec_first n l = map (subtract 1) . take n l

Can anyone help me understand why this function only works with one variable, but not in the other settings?

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.
Why should this post be closed?

0 comment threads

2 answers

You are accessing this answer with a direct link, so it's being shown above all other answers regardless of its score. You can return to the normal view.

+3
−0

The quick fix is:

map (subtract 1) . take n $ l

When I put your function in my own Haskell compiler, I get:

Possible cause: ‘take’ is applied to too many arguments

Remember that in Haskell, we don't have functions with multiple parameters. We have functions with a single parameter, that return either values or new functions. (That, in turn, only take a single parameter).

map (subtract 1) . take n l is read by Haskell as (map (subtract 1)) . (take n l) .

  • The first part is a function that maps a list of numbers to a list of numbers. It has type (Num b) => [b] -> [b].
  • The second part is a function that maps an integer to a function that takes a list and returns a list. It has type Int -> [a] -> [a].

So it tries to do function composition, where the first function is of type ([b] -> [b]), and the second of type (Int -> [a] -> [a]). That's not compatible.

We can make it work by writing it as (map (subtract 1)) . take n)( l ), or the shorthand function map (subtract 1)) . take n $ l. Now we have a function that subtracts 1 from every element in a list, and takes the first n elements of the result. This function then gets our list as argument.


In your comment, you pointed out that you also tried:

dec_first = map (subtract 1) . take

This gave you a different error message:

Probable cause: `take' is applied to too few arguments

This time, we have the opposite situation. The function map (subtract 1) is a neat function that takes a list of Num and returns a list of Num: it is of type (Num a) => [a] -> [a].

You then try to apply this to take, whose type is Int -> [a] -> [a]. It's a function that takes an integer, to yield a function that takes a list and yields a list. But... Haskell doesn't see any integers!

We can fix this by giving it the Integer it wants:

dec_first n = map (subtract 1) . take n

If you're using GHCi, you can put :t in front of a function to see its type. For example:

ghci> :t map (subtract 1)
map (subtract 1) :: Num b => [b] -> [b]

This can be very helpful to see if the type of your function is what you expected it to be, and to see if it matches the functions you're feeding it.

History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.

2 comment threads

Wrong explanation for the 2 explicit parameter case. (2 comments)
but what if `take` is not applied to anything (2 comments)
+4
−0

Recall that . (composition) is defined as:

f . g = \x -> f (g x)

That is, it composes two functions of one argument each. The result (another function of one argument) passes its argument x to g, and the result of that to f.

Your first attempt was:

map (subtract 1) . take
-- inline the definition of (.)
--   with f = map (subtract 1)
--   and g = take
\x -> map (subtract 1) (take x)

This doesn't work because map expects a list as its second argument, but take x is not a list. (It is a function mapping lists to lists, [a] -> [a].)

Your second attempt:

map (subtract 1) . take n
-- inline the definition of (.)
--   with f = map (subtract 1)
--   and g = take n
\x -> map (subtract 1) (take n x)

This works: take n x is a list and map takes a list.

Your third attempt:

map (subtract 1) . take n l
-- inline the definition of (.)
--   with f = map (subtract 1)
--   and g = take n l
\x -> map (subtract 1) (take n l x)

This fails because take n l x is a type error. It tries to apply take n l to x, which would require take n l to be a function, but it is a list.


In summary, . composes two functions of a single argument each. map foo . take fails because take is a function of two arguments; map foo . take n l fails because take n l is not a function at all (it takes zero arguments). In the working version, map foo . take n, we partially apply take and take n is indeed a function of one argument.


In order to compose a function of one argument with a function of two arguments, we could define another operator:

f .: g = \x y -> f (g x y)

Then we could write:

dec_first = map (subtract 1) .: take

Alternatively, we could write:

dec_first = (map (subtract 1) .) . take
-- which is the same as
dec_first = (.) (map (subtract 1)) . take

The reason this works is that the first . waits for one argument and passes it to take, then passes the result of that (a partially applied take x) to another ., which results in the map (subtract 1) . take x code that we already know works:

-- inline the first (.)
--   with f = (.) (map (subtract 1))
--   and g = take
dec_first = \x -> (.) (map (subtract 1)) (take x)
-- write (.) in infix notation
dec_first = \x -> map (subtract 1) . take x

We could even write our .: operator as a composition of compositions:

(.:) = (.) . (.)
-- inline the first layer of (.)
(.:) = \x -> (.) ((.) x)
-- eta-expand
(.:) = \x y -> (.) ((.) x) y
-- convert to infix notation
(.:) = \x y -> ((.) x) . y
-- inline the second layer of (.)
(.:) = \x y z -> (.) x (y z)
-- convert to infix notation
(.:) = \x y z -> x . y z
-- inline the third layer of (.)
(.:) = \x y z w -> x (y z w)
-- rename parameters
(.:) = \f g x y -> f (g x y)
History
Why does this post require attention from curators or moderators?
You might want to add some details to your flag.

1 comment thread

Works for me (1 comment)

Sign up to answer this question »